Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 2-(4-Chlorophenoxy)- $N^{\prime}$-[2-(4-chlorophenoxy)acetyl]acetohydrazide monohydrate

Ting Chen ${ }^{\text {a* }}$ and Xiaosong Tan ${ }^{\text {b }}$

${ }^{\text {a }}$ Faculty of Material Science and Chemical Engineering, China University of Geosciences, Wuhan 430074, People's Republic of China, and ${ }^{\text {b }}$ Key Laboratory of Pesticide \& Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
Correspondence e-mail: chen3510@163.com
Received 21 September 2010; accepted 9 October 2010
Key indicators: single-crystal X-ray study; $T=292 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.056 ; w R$ factor $=0.169$; data-to-parameter ratio $=16.6$.

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, the hydrazine and water molecules are both located on twofold axes. The C -$\mathrm{N}-\mathrm{N}-\mathrm{C}$ torsion angle is $-72.66(1)^{\circ}$ and the dihedral angle between the two benzene rings is $67.33(1)^{\circ}$. In the crystal, molecules are linked into a layer structure by a combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Adjacent layers are linked into a three-dimensional network by $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions $[3.400(2) \AA$ ]. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also observed.

## Related literature

For the synthesis and biological activity of title compound and its derivatives, see: Dovlatvan (1961). For the synthesis and biological activity of diacylhydrazine derivatives, see: Jia (2008); Zhang et al. (2005); Zhao et al. (2008). For a related structure, see: Jiang et al. (2009).


## Experimental

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=387.21$

Monoclinic, $P 2 / n$
$a=4.8462$ (9) $\AA$

$$
\begin{aligned}
& b=5.4411(10) \AA \\
& c=33.521(6) \AA \\
& \beta=90.840(3)^{\circ} \AA \\
& V=883.8(3) \AA^{3} \\
& Z=2
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=292 \mathrm{~K}$
$0.10 \times 0.04 \times 0.02 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
9670 measured reflections
2013 independent reflections 1380 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.059$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$
2013 reflections
121 parameters

2 restraints

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{2}$ | 0.93 | 2.47 | $3.382(3)$ | 166 |
| $\mathrm{O}^{\mathrm{i}}-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{i}}$ | $0.82(1)$ | $1.96(1)$ | $2.765(2)$ | $169(4)$ |
| $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$ | $0.86(1)$ | $2.12(2)$ | $2.911(3)$ | $153(3)$ |
| $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ | $0.86(1)$ | $2.26(3)$ | $2.633(2)$ | $107(2)$ |
| $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1^{\mathrm{ii}}$ | 0.97 | 2.76 | $3.592(1)$ | 144 |

Symmetry codes: (i) $x-1, y-1, z$; (ii) $x+1, y, z$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the financial support of this work by the Hubei Provincial Natural Science Foundation of China (No. 2009CDB175).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2047).

## References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dovlatvan, V. V. (1961). Khim. Nauki, 14, 347-352.
Jia, B.-T. (2008). J. Chin. Mod. Agro. 7, 9-13.
Jiang, X.-Y., Feng, X.-J., Yang, S., Xu, H.-J. \& Hao, L.-Y. (2009). Acta Cryst. E65, o2189.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, X.-N., Ni, Y.-P., Li, Y.-F. \& Jiang, M. G. (2005). J. Nanjing Agric. Univ. 28, 135-139.
Zhao, Q.-Q., Qu, X.-M., Huang, Z.-Q., Bi, F.-Ch., Huang, R.-Q. \& Wang Q.-M. (2008). J. Agric. Food Chem. 56, 10799-10804.

## supplementary materials

## 2-(4-Chlorophenoxy)- $N^{\prime}$-[2-(4-chlorophenoxy)acetyl]acetohydrazide monohydrate

## T. Chen and X. Tan

## Comment

Most diacylhydrazine derivatives have insecticide activity (Zhang et al., 2005; Jia, 2008; Zhao et al., 2008). While in our research of herbicidal compounds, we found some diacylhydrazine derivatives showing herbicidal activity. We have synthesized the title compound and report its crystal structure here.

In the title compound (Fig. 1), the hydrazine and water molecules are both located on twofold axes. The torsion angle $\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 1(-x+5 / 2, y,-z+1 / 2)-\mathrm{C} 8(-x+5 / 2, y,-z+1 / 2)$ is $-72.66(1)^{\circ}$ and the dihedral angle between the two benzene rings is $67.33(1)^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are found in the crystal structure (Table 1), and one $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction $[\mathrm{C} 7 \cdots C g 1(x+1, y, z)=3.592$ (1) $\AA, C g 1$ is the centroid defined by benzene atoms $\mathrm{C} 1-\mathrm{C} 6$ ] is also observed.

In the crystal packing, the molecules are linked into a two-dimensional layer structure by a combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2). These adjacent layers are linked into a three-dimensional network by the $\mathrm{Cl} 1 \cdots \mathrm{Cl1}(-x,-y, 1-z)$ interaction (3.400 (2) $\AA$, Fig. 3).

## Experimental

4-chlorophenoxyacetyl chloride ( $4.10 \mathrm{~g}, 20 \mathrm{mmol}$ ) was dissolved in toluene ( 20 ml ), together with hydrazine hydrate $(85 \%$, $0.59 \mathrm{~g}, 10 \mathrm{mmol})$. The solution was stirred at room temperature and then pyridine ( $1.60 \mathrm{~g}, 20 \mathrm{mmol}$ ) was added dropwise. Then the solution was heated at 373 K for two hours. The product was isolated and recrystallized as a colorless solid from ethanol (yield 80.3\%).

## Refinement

H atoms on C atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) and $0.97 \AA$ (methylene). The $U_{\text {iso }}(\mathrm{H})$ values were set 1.2 times of their parent atoms. H atoms attached to N and O atoms were found from the difference maps and refined with restraints $(\mathrm{N}-\mathrm{H}=0.86(1) \AA$ and $\mathrm{O}-\mathrm{H}=0.82$ (1) $\AA$ ), and their thermal factors were set 1.2 times (for N ) or 1.5 times (for O ) of the parent atoms.

## Figures



Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme for the non-H atoms and $50 \%$ probability displacement ellipsoids.

## supplementary materials



Fig. 2. Two-dimensional layer structure by hydrogen bonding indicated as dashed lines.

Fig. 3. Three-dimensional network formed via $\mathrm{Cl1} \cdots \mathrm{Cl1}(-x,-y, 1-z)$ interactions.

## 2-(4-Chlorophenoxy)- $N^{1}$-[2-(4-chlorophenoxy)acetyl]acetohydrazide monohydrate

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=387.21$
Monoclinic, $P 2 / n$
Hall symbol: -P 2 yac
$a=4.8462$ (9) $\AA$
$b=5.4411$ (10) $\AA$
$c=33.521(6) \AA$
$\beta=90.840(3)^{\circ}$
$V=883.8(3) \AA^{3}$
$Z=2$
$F(000)=400$
$D_{\mathrm{x}}=1.455 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2333 reflections
$\theta=3.7-26.5^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=292 \mathrm{~K}$
Block, colourless
$0.10 \times 0.04 \times 0.02 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
graphite
phi and $\omega$ scans
9670 measured reflections
2013 independent reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.169$
$S=1.06$
2013 reflections

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0947 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

## 121 parameters

2 restraints

$$
\begin{aligned}
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
\end{aligned}
$$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| C1 | $0.3940(6)$ | $0.2592(5)$ | $0.43058(8)$ | $0.0523(7)$ |
| C2 | $0.5608(6)$ | $0.4610(6)$ | $0.43082(7)$ | $0.0596(8)$ |
| H2 | 0.5626 | 0.5664 | 0.4527 | $0.072^{*}$ |
| C3 | $0.3829(6)$ | $0.1066(5)$ | $0.39794(9)$ | $0.0585(7)$ |
| H3 | 0.2647 | -0.0281 | 0.3977 | $0.070^{*}$ |
| C4 | $0.7276(5)$ | $0.5091(5)$ | $0.39850(7)$ | $0.0504(7)$ |
| H4 | 0.8425 | 0.6460 | 0.3987 | $0.060^{*}$ |
| C5 | $0.5469(5)$ | $0.1529(5)$ | $0.36551(8)$ | $0.0499(6)$ |
| H5 | 0.5394 | 0.0499 | 0.3434 | $0.060^{*}$ |
| C6 | $0.7225(5)$ | $0.3534(4)$ | $0.36602(6)$ | $0.0389(5)$ |
| C7 | $1.0585(5)$ | $0.5868(4)$ | $0.33195(7)$ | $0.0412(6)$ |
| H7A | 1.1768 | 0.5850 | 0.3556 | $0.049^{*}$ |
| H7B | 0.9502 | 0.7367 | 0.3324 | $0.049^{*}$ |
| C8 | $1.2341(5)$ | $0.5841(4)$ | $0.29520(6)$ | $0.0391(5)$ |
| C11 | $0.1904(2)$ | $0.1932(2)$ | $0.47157(2)$ | $0.0884(4)$ |
| O1 | $0.8805(3)$ | $0.3820(3)$ | $0.33266(4)$ | $0.0459(5)$ |
| O2 | $1.4157(4)$ | $0.7389(3)$ | $0.29242(6)$ | $0.0582(5)$ |
| N1 | $1.1790(4)$ | $0.4132(4)$ | $0.26786(5)$ | $0.0394(5)$ |
| O3 | 0.7500 | $0.0536(4)$ | 0.2500 | $0.0484(6)$ |
| H1 | $1.042(4)$ | $0.316(5)$ | $0.2707(9)$ | $0.066(9)^{*}$ |
| H3A | $0.636(6)$ | $-0.036(6)$ | $0.2602(11)$ | $0.099^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | $0.0490(15)$ | $0.0682(17)$ | $0.0399(14)$ | $-0.0006(12)$ | $0.0127(11)$ | $0.0082(12)$ |
| C2 | $0.0648(18)$ | $0.080(2)$ | $0.0345(13)$ | $-0.0098(15)$ | $0.0128(12)$ | $-0.0117(13)$ |
| C3 | $0.0557(16)$ | $0.0530(16)$ | $0.0673(18)$ | $-0.0132(12)$ | $0.0187(13)$ | $0.0008(13)$ |
| C4 | $0.0531(15)$ | $0.0583(16)$ | $0.0400(13)$ | $-0.0155(12)$ | $0.0092(11)$ | $-0.0082(11)$ |
| C5 | $0.0516(15)$ | $0.0500(14)$ | $0.0485(15)$ | $-0.0076(12)$ | $0.0129(11)$ | $-0.0088(11)$ |


| C6 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C7 | $0.0358(12)$ | $0.0482(13)$ | $0.0330(12)$ | $0.0004(10)$ | $0.0064(9)$ | $-0.0009(9)$ |
| C8 | $0.0433(13)$ | $0.0442(13)$ | $0.0363(12)$ | $-0.0054(10)$ | $0.0079(10)$ | $-0.0026(10)$ |
| C11 | $0.0381(12)$ | $0.0435(13)$ | $0.0357(12)$ | $-0.0001(10)$ | $0.0051(9)$ | $0.0044(10)$ |
| O1 | $0.0842(6)$ | $0.1257(8)$ | $0.0562(5)$ | $-0.0160(5)$ | $0.0333(4)$ | $0.0175(4)$ |
| O2 | $0.0480(10)$ | $0.0540(10)$ | $0.0362(9)$ | $-0.0121(8)$ | $0.0154(7)$ | $-0.0079(7)$ |
| N1 | $0.0606(12)$ | $0.0641(12)$ | $0.0504(11)$ | $-0.0269(9)$ | $0.0149(9)$ | $-0.0052(8)$ |
| O3 | $0.0383(11)$ | $0.0435(11)$ | $0.0368(10)$ | $-0.0052(9)$ | $0.0135(8)$ | $-0.0018(8)$ |
|  | $0.0477(15)$ | $0.0424(14)$ | $0.0558(15)$ | 0.000 | $0.0216(11)$ | 0.000 |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| C1-C2 | 1.363 (4) | C6-O1 | 1.373 (2) |
| :---: | :---: | :---: | :---: |
| C1-C3 | 1.374 (4) | C7-O1 | 1.410 (3) |
| C1-Cl1 | 1.741 (2) | C7-C8 | 1.507 (3) |
| C2-C4 | 1.386 (3) | C7-H7A | 0.9700 |
| C2-H2 | 0.9300 | C7-H7B | 0.9700 |
| C3-C5 | 1.379 (3) | C8-O2 | 1.223 (3) |
| C3-H3 | 0.9300 | C8-N1 | 1.330 (3) |
| C4-C6 | 1.380 (3) | $\mathrm{N} 1-\mathrm{N} 1^{\text {i }}$ | 1.390 (3) |
| C4-H4 | 0.9300 | N1-H1 | 0.856 (10) |
| C5-C6 | 1.383 (3) | O3-H3A | 0.815 (10) |
| C5-H5 | 0.9300 |  |  |
| C2-C1-C3 | 120.5 (2) | O1-C6-C5 | 115.4 (2) |
| C2-C1-Cl1 | 120.3 (2) | C4-C6-C5 | 119.9 (2) |
| C3-C1-C11 | 119.2 (2) | O1-C7-C8 | 111.02 (18) |
| C1-C2-C4 | 120.0 (2) | O1-C7-H7A | 109.4 |
| C1-C2-H2 | 120.0 | C8-C7-H7A | 109.4 |
| $\mathrm{C} 4-\mathrm{C} 2-\mathrm{H} 2$ | 120.0 | $\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$ | 109.4 |
| C1-C3-C5 | 120.1 (2) | C8-C7-H7B | 109.4 |
| C1-C3-H3 | 120.0 | H7A-C7-H7B | 108.0 |
| C5-C3-H3 | 120.0 | $\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1$ | 124.5 (2) |
| C6-C4-C2 | 119.8 (2) | O2-C8-C7 | 118.1 (2) |
| C6-C4-H4 | 120.1 | N1-C8-C7 | 117.39 (19) |
| C2-C4-H4 | 120.1 | C6-O1-C7 | 116.86 (17) |
| C3-C5-C6 | 119.7 (2) | $\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 1^{\text {i }}$ | 119.77 (17) |
| C3-C5-H5 | 120.1 | C8-N1-H1 | 120 (2) |
| C6-C5-H5 | 120.1 | N1 ${ }^{\text {i }}-\mathrm{N} 1-\mathrm{H} 1$ | 119 (2) |
| O1-C6-C4 | 124.7 (2) |  |  |
| C3-C1-C2-C4 | -2.1 (4) | C3-C5-C6-C4 | -1.7 (4) |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$ | 178.4 (2) | $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2$ | -173.5 (2) |
| C2-C1-C3-C5 | 1.8 (4) | $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$ | 6.8 (3) |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 5$ | -178.6 (2) | C4-C6-O1-C7 | -0.3 (3) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 6$ | 0.5 (4) | C5-C6-O1-C7 | 179.0 (2) |
| C1-C3-C5-C6 | 0.1 (4) | C8-C7-O1-C6 | 175.62 (18) |
| C2-C4-C6-O1 | -179.4 (2) | $\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 1^{\text {i }}$ | -4.2 (4) |
| C2-C4-C6-C5 | 1.4 (4) | $\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 1^{\text {i }}$ | 175.4 (2) |
| C3-C5-C6-O1 | 179.0 (2) |  |  |
| Symmetry codes: (i) |  |  |  |

Hydrogen-bond geometry ( $A$, ${ }^{\circ}$ )
Cg 1 is the centroid of the C1-C6 ring.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{ii}}$ | 0.93 | 2.47 | $3.382(3)$ | 166 |
| $\mathrm{O} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{ii}}$ | $0.82(1)$ | $1.96(1)$ | $2.765(2)$ | $169(4)$ |
| $\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 3$ | $0.86(1)$ | $2.12(2)$ | $2.911(3)$ | $153(3)$ |
| $\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1$ | $0.86(1)$ | $2.26(3)$ | $2.633(2)$ | $107(2)$ |
| $\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{Cg} 1^{\mathrm{iii}}$ | 0.97 | 2.76 | $3.592(1)$ | 144 |

Symmetry codes: (ii) $x-1, y-1, z$; (iii) $x+1, y, z$.

## supplementary materials

Fig. 1


Fig. 2


Fig. 3


